2,903 research outputs found

    Coexistence diameter in two-dimensional colloid-polymer mixtures

    Full text link
    We demonstrate that the law of the rectilinear coexistence diameter in two-dimensional (2D) mixtures of non-spherical colloids and non-adsorbing polymers is violated. Upon approach of the critical point, the diameter shows logarithmic singular behavior governed by a term t ln(t), with t the relative distance from the critical point. No sign of a term t^2b could be detected, with b the critical exponent of the order parameter, indicating a very weak or absent Yang-Yang anomaly. Our analysis thus reveals that non-spherical particle shape alone is not sufficient for the formation of a pronounced Yang-Yang anomaly in the critical behavior of fluids.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E (R

    The interaction of amyloid A beta(1-40) with lipid bilayers and ganglioside as studied by P-31 solid-state NMR

    Get PDF
    Amyloid P-peptide (A beta) is a major component of plaques in Alzheimer's disease, and formation of senile plaques has been suggested to originate fro m regions of neuronal membrane rich in gangliosides. We analyzed the mode of interaction of A beta with lipid bilayers by multinuclear NMR using P-31 nuclei. We found that A beta (1-40) strongly perturbed the bilayer structure of dimyristoylphosphatidylcholine (DMPQ, to form a non-lamellar phase (most likely micellar). The ganglioside GM1 potentiated the effect of A beta (1-40), as viewed from P-31 NMR. The difference of the isotropic peak intensity between DMPC/A beta and DMPC/GM1/A beta suggests a specific interaction between A beta and GM1. We show that in the DMPC/GM1/A beta system there are three lipid phases, namely a lamellar phase, a hexagonal phase and non-oriented lipids. The latter two phases are induced by the presence of the A beta peptide, and facilitated by GM1. 9) 2008 Elsevier Ireland Ltd. All rights reserved

    Flexible substrate for printed wiring

    Get PDF
    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives

    Flexible composite film for printed circuit board

    Get PDF
    A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed

    Supersaturated dispersions of rod-like viruses with added attraction

    Get PDF
    The kinetics of isotropic-nematic (I-N) and nematic-isotropic (N-I) phase transitions in dispersions of rod-like {\it fd}-viruses are studied. Concentration quenches were applied using pressure jumps in combination with polarization microscopy, birefringence and turbidity measurements. The full biphasic region could be accessed, resulting in the construction of a first experimental analogue of the bifurcation diagram. The N-I spinodal points for dispersions of rods with varying concentrations of depletion agents (dextran) were obtained from orientation quenches, using cessation of shear flow in combination with small angle light scattering. We found that the location of the N-I spinodal point is independent of the attraction, which was confirmed by theoretical calculations. Surprisingly, the experiments showed that also the absolute induction time, the critical nucleus and the growth rate are insensitive of the attraction, when the concentration is scaled to the distance to the phase boundaries.Comment: 13 pages, 14 figures. accepted in Phsical Review

    Structure and thermodynamics of colloid-polymer mixtures: a macromolecular approach

    Full text link
    The change of the structure of concentrated colloidal suspensions upon addition of non-adsorbing polymer is studied within a two-component, Ornstein-Zernicke based liquid state approach. The polymers' conformational degrees of freedom are considered and excluded volume is enforced at the segment level. The polymer correlation hole, depletion layer, and excess chemical potentials are described in agreement with polymer physics theory in contrast to models treating the macromolecules as effective spheres. Known depletion attraction effects are recovered for low particle density, while at higher densities novel many-body effects emerge which become dominant for large polymers.Comment: 7 pages, 4 figures; to be published in Europhys. Let

    Discrete elastic model for stretching-induced flagellar polymorphs

    Full text link
    Force-induced reversible transformations between coiled and normal polymorphs of bacterial flagella have been observed in recent optical-tweezer experiment. We introduce a discrete elastic rod model with two competing helical states governed by a fluctuating spin-like variable that represents the underlying conformational states of flagellin monomers. Using hybrid Brownian dynamics Monte-Carlo simulations, we show that a helix undergoes shape transitions dominated by domain wall nucleation and motion in response to externally applied uniaxial tension. A scaling argument for the critical force is presented in good agreement with experimental and simulation results. Stretching rate-dependent elasticity including a buckling instability are found, also consistent with the experiment
    • …
    corecore